
Project Report and
Technical Documentation

Zurich University of Applied Sciences Winterthur (ZHW)

Thomas Jund <info@jund.ch>
Andrew Mustun <andrew@mustun.com>

Laurent Cohn <info@cohn.ch>

1st January 2005

Version 1.0

Department: Engineering
Date of Delivery: 2nd July 2004
Research Mentor: Peter T. Früh

Prof. Dr. sc. techn., dipl. El.-Ing. ETH
University lecturer for Software Engineering

ii

Abstract
This document describes the specification, design and implementation of TeamDraw, a chat
client that features textual as well as graphical capabilities.

Some of the most popular services the Internet has to offer, have to do with the direct
communication between its users. However, most of these services are purely text based
which clearly hinders creativity. When it comes to brain storming and planning projects,
using graphical elements to visualize ideas and thoughts can be crucial.

The software application that was developed for this project allows the users to exchange
text messages as well as graphical elements such as lines or simple shapes. The
implementation builds on existing solutions and reuses as much as possible from the
concept of existing text based chat systems.

This project has shown that it is realistic to simultaneously work on drawings that are
shared over the Internet.

Project Report and
Technical Documentation

CONTENTS iii

Contents

1 Introduction 1

1.1 Scope Of This Document . 1

1.2 Motivation . 1

1.3 Example Applications . 2

1.4 Task Description . 2

2 Instant Communication Over The Internet 4

2.1 How IRC Works . 4

2.2 Who Uses IRC? . 4

3 From IRC To TeamDraw 5

3.1 Messages vs. Documents . 5

3.2 Stateful IRC And Persistence . 5

3.2.1 Clients With Equal Status . 5

3.2.2 Centralized System With A Bot . 6

3.3 Performance . 6

4 Application Requirements 8

4.1 Functional Requirements . 8

4.1.1 Basic Chat Functionality . 8

4.1.2 Graphical Extensions . 8

4.1.3 Managing Drawings . 9

4.1.4 Platforms . 9

4.2 Interface Requirements . 10

4.2.1 Graphical User Interface Of The Client 10

5 Design 11

5.1 Architecture Overview . 11

5.2 Overall Design . 11

5.3 Design Of The TeamDraw Modules . 12

5.3.1 Graphics Library . 12

5.3.2 IRC Library . 15

5.3.3 Core Library . 16

Project Report and
Technical Documentation

CONTENTS iv

5.3.4 Application GUI . 17

6 The TeamDraw Client 19

6.1 The Main Application Window . 19

6.2 Connecting To An IRC Server . 19

6.3 Channel Dialog . 20

6.4 Joining And Leaving A Channel . 20

6.5 Text Based Communication . 21

6.6 Graphical Communication . 22

6.6.1 Tools . 23

6.6.2 Highlighting . 24

6.6.3 Selection . 24

7 The TeamDraw Bot 25

7.1 Locking Graphical Entities For Modification 25

7.2 Persistence Of Drawings . 26

7.3 Receiving And Forwarding Graphical Messages 26

7.4 Optimized Distribution Of Messages . 26

7.5 Distinguishing Users . 28

7.6 Configuration And Usage Of The Bot . 30

7.7 IRC Commands For The Bot . 30

7.8 Settings File . 31

8 Project Management 32

8.1 Project Initiation . 32

8.1.1 Choosing A License . 32

8.2 Documentation Tools . 32

8.2.1 Source Code Documentation . 32

8.2.2 Technical Documentation . 32

8.3 Development Platform . 33

8.4 Programming Language . 33

8.5 GUI Toolkit . 33

8.6 Version Control System . 34

8.7 Generation Of Executables . 34

Project Report and
Technical Documentation

CONTENTS v

8.8 Graphics Format . 34

8.9 Project Organization . 35

8.9.1 Project Responsibilities and Deliverables 35

8.9.2 Project Schedule . 36

9 Conclusion 37

9.1 Room For Improvements And Additional Features 37

9.2 Significance Of The Project . 37

9.3 Learning Process . 37

A Protocol Specification 38

A.1 Message Details . 38

A.2 Message Overview . 38

A.2.1 Syntax Format . 39

A.2.2 ABNF Notation . 39

A.3 Message Details of TeamDraw Messages . 40

A.3.1 Overview . 40

A.3.2 Acquire Request Message . 40

A.3.3 Acquire Reply Message . 40

A.3.4 Choose Drawing Message . 41

A.3.5 Drawing Completed Message . 41

A.3.6 Registration Message . 41

A.3.7 Registration Reply . 41

A.3.8 Join Message . 42

A.3.9 Drawing list Request Message . 42

A.3.10 Drawing list Reply Message . 42

A.3.11 Graphical Message . 42

A.3.12 Graphical Message Start . 43

A.3.13 Graphical Message Continue . 43

A.3.14 Graphical Message End . 43

B Supported SVG Elements 44

C Glossary 45

Project Report and
Technical Documentation

LIST OF FIGURES vi

D References 46

E CD ROM Contents 47

F About the Authors 48

List of Figures

1 The basic idea . 2

2 An IRC network with clients. 4

3 Clients with equal status . 5

4 Centralized system with a bot . 6

5 GUI requirements . 10

6 Architecture overview. 11

7 Graphics library design: model and view classes. 13

8 Graphics library design: controller classes. 14

9 Sequence diagram for drawing a line. 14

10 IRC library design. 15

11 Core library design. 16

12 The classes of the TeamDraw GUI in client mode. 17

13 The classes of the TeamDraw GUI in the standalone mode. 18

14 Application GUI design. 18

15 Server connections dialog . 19

16 Channel dialog . 21

17 Text area . 21

18 Graphics area . 22

19 Highlighting . 24

20 Selection . 24

21 Locking and modification sequence. 25

22 Drawing sequence . 26

23 Round robin. 27

24 Login sequence . 28

25 Bot joining sequence . 29

26 Planned schedule. 36

Project Report and
Technical Documentation

LIST OF TABLES vii

27 Measured progress by module. 36

28 Message overview. 38

List of Tables

1 Server connection parameters. 20

2 TeamDraw tools. 23

3 Overview of bot commands. 30

4 Bot options, settings file. 31

5 Value benefit analysis for the technical documentation. 32

6 Value benefit analysis for the development platform. 33

7 Value benefit analysis for the programming language. 33

8 Overview of message details. 40

Project Report and
Technical Documentation

1 INTRODUCTION 1

1 Introduction

This chapter briefly introduces project TeamDraw and defines the scope of this documentation. Further
it should provide sufficient background information to understand the context and goal of this project.

1.1 Scope Of This Document

This document should give the reader an idea about how instant communication over the
Internet (especially in the case of IRC) works. It then describes what has to be done to allow
graphical communication on top of a text based service.

Reading this document does not require any knowledge of the IRC service. However, the
reader should have a good idea of how the Internet works and understand the basics of
communication and server / client models.

The more technical part of the document provides a reference of the protocol that was
developed to extend IRC and briefly looks at the design and implementation of the TeamDraw
modules.

1.2 Motivation

The Internet offers a place to not only find information but also communicate with other
people without having to meet them in person. Services like E-mail have shown that commu-
nicating over the Internet makes sense and can be a real alternative to other communication
means. However, while E-mail does a great job in replacing regular mail, it fails when it
comes to holding virtual meetings over the Internet. For truly interactive communication,
the information needs to be exchanged almost instantly between the users.

One service that allows such a direct communication is called IRC (Internet Relay Chat).
IRC makes conversations possible that are similar to phone calls but based on text messages
rather than voice. While this is much closer to a possible solution for an online meeting, there
is still one important component missing: the white board or over-head projection which is
used in meetings to draw sketches or diagrams or simply to be creative.

The goal of this project is the design and implementation of TeamDraw – an IRC client that is
not limited to text based communication. The existing IRC protocol is extended by graphical
functionality so users can talk to each other but also collaborate on creating simple drawings
as shown in Figure 1.

Project Report and
Technical Documentation

1.3 Example Applications 2

Screen of Alice:

alice: hi
dave: how are you?
alice: fine, thanks!

project

implem.

budget

Text Display

Text Input Line

Drawing Display
and Input

alice: hi
dave: how are you?
alice: fine, thanks!

project

implem.

budget

Dave:

Internet

what are you up to?

alice: hi
dave: how are you?
alice: fine, thanks!

project

implem.

budget

Carol:

Figure 1: The basic idea behind this project is to allow users to interact in a textual and
graphical way.

1.3 Example Applications

The possibilities of using graphical elements to share ideas over the Internet are almost
endless. TeamDraw focuses on the following applications:

Sketching

• Explaining in simple sketches what is hard to phrase in words
(e.g. the way to a location).

Technical Applications

• Creating mind maps in a team.
• Drawing technical diagrams and charts

(e.g. UML, flow charts, software architectures, . . .)

1.4 Task Description

This task outline is based on a project work description that was originally worded in German 1.

The goal of this task is the design and reference implementation of a chat client with graphic
capabilities. A protocol is designed to embed graphical entities in the existing IRC protocol.

A typical use case for such a system is a brainstorm session over the Internet. Users create
graphical objects and texts with a graphic tablet or a mouse.

Any conventional IRC server can be used to connect the chat participants. The handling of
the graphical entities can be achieved by implementing a special client (”IRC Bot“).

A user client consists of a graphical and a textual input and output module. Graphical

1http://www-t.zhwin.ch/pada/Preview.jsp?ArbeitID=1438

Project Report and
Technical Documentation

1 INTRODUCTION 3

elements will most likely be constructed and transmitted as vector graphics, since the main
applications are of a technical nature.

The communication between clients and servers uses the IRC protocol (RFC 1459). The
graphical extensions are embedded in the payload of the IRC communication for example as
an SVG snippets.

Project Report and
Technical Documentation

4

2 Instant Communication Over The Internet

This chapter explains the basics of instant communication over the Internet on the example of IRC
(Internet Relay Chat). The full protocol is specified in RFC 1459 2.

2.1 How IRC Works

IRC Server Y
IRC Server X

IRC Server Z

Client A

IRC Network

Client B

Client C

Client D

Client E

Client F

Figure 2: An IRC network with clients.

Figure 2 shows an overview over a typical IRC network with a couple of clients. The IRC
network consists of one or more IRC servers which are configured in a way that they know
about each other and form a spanning tree 3. Client C and Client D are both connected to
the same IRC network although they are not connected to the same server. If, for example,
Client C wants to talk to Client D, the message is sent to Server Y. Server Y forwards the
message to Server Z which knows Client D and delivers the message.

Large scale IRC networks like ”Undernet“ 4 consist of between 20 and 50 servers and are
serving over 100,000 clients at any time.

2.2 Who Uses IRC?

Although the vast majority of chatters use IRC for fun, there are also many serious appli-
cations for IRC. Many Open Source project teams use IRC as their main communication
medium to organize their efforts. But managing international teams is also an important
issue for any global organization or company. IRC is a service that can certainly help.

2http://www.ietf.org/rfc/rfc1459.txt
3Spanning trees prevent loops in a network.
4http://www.undernet.org

Project Report and
Technical Documentation

3 FROM IRC TO TEAMDRAW 5

3 From IRC To TeamDraw

This chapter gives an overview of the main issues that have to be solved when introducing graphical
content in an IRC client.

3.1 Messages vs. Documents

Conventional chat services allow users to send messages to each other. Once a message was
sent and received, the system as such does not remember it. Although the system is not
entirely stateless, the messages are not part of its internal state.

This model is not sufficient to share and modify documents like drawings. A client that
disconnects from the network must have the possibility to receive the last state of the drawing
again.

3.2 Stateful IRC And Persistence

There are two possibilities to add a state to an IRC system and make documents persistent:

A) The clients exchange the data among each other to keep synchronized (see Figure 3).
B) A special client acts as the master client which has the copy of the document that is

relevant for all other clients (see Figure 4).

3.2.1 Clients With Equal Status

IRC Network

Add Line

Client C

Client A
Client B

Client D

Figure 3: A system in which each client holds a copy of the drawing document. This copy
can be modified by the other clients for example by adding lines.

Figure 3 shows a system in which all clients have an equal status. This architecture raises a
number of issues:

• The drawings of the clients can easily run out of synchronization, for example if a client
has to reconnect and misses some messages by doing that.

• It is not clearly defined how a client synchronizes with the others when joining a new
team.

Project Report and
Technical Documentation

3.3 Performance 6

• If every client is responsible for the graphical elements he has created, that responsibility
has to be handed over when a client leaves.

• When all clients are disconnected from the network, the drawing is no longer available
to other users who might join at a later time.

• A client does not know which drawings the other clients are working on. Therefore
all graphical messages would have to be sent to all clients, regardless of whether they
work on the same drawing or not.

For these reasons, a centralized system with a clearly defined master appears to be more
appropriate.

3.2.2 Centralized System With A Bot

IRC Network
Add Line

Add Line

Add Line

Bot

Master Drawing

Client A
Client B

Client D

Client C

Figure 4: In TeamDraw, a system was implemented with only one relevant master copy of
the document. This document is managed by a master client (a bot). All clients synchronize
their local copy of the drawing with the master drawing.

For the reasons outlined in section 3.2.1, adding state to IRC is commonly done with so-called
bots. These special automated clients can provide various services to the users. In TeamDraw,
a bot processes messages which modify a drawing. If, for example, a user draws a line into
the graphical area of his screen, a message is sent to the bot that contains the geometry of that
line. The bot receives this message, adds the line to the drawing it belongs to and forwards
that event to the other clients. The bot acts as the master of the system. It is clear at any time
that a drawing has to match the master drawing on the bot to be synchronized.

3.3 Performance

Usually performance is not a big issue when transferring simple vector graphics over the
Internet. However, IRC networks have to protect themselves from flooding5. They do this by
limiting the maximum number of messages that can be sent in a given time frame (typically
about one message per second). Users who do not obey to this rule usually get kicked or
banned from a channel or even a whole network.

5Flooding occurs when a user sends out a large number of messages in a short time

Project Report and
Technical Documentation

3 FROM IRC TO TEAMDRAW 7

Being able to send one message per second is not enough for the application of TeamDraw.
Imagine a drawing with 120 graphical elements has to be sent to a user who selects that
drawing to work on. Transferring the whole drawing to that user would take about two
minutes which is hardly acceptable. Now imagine ten users joining a channel and selecting
such a drawing at the same time. It would take the bot about 20 minutes to deliver the
drawing to all users without flooding the IRC network.

For this reason, a standard IRC network is not suitable for working with TeamDraw. Luckily,
a standalone IRC network that is set up for the use with TeamDraw and can only be accessed
by trusted users can be easily tuned to allow a much better performance. Even drawings
with well over 100 entities can be transferred to multiple users within seconds.

Project Report and
Technical Documentation

8

4 Application Requirements

This chapter lists all requirements that should be fulfilled by TeamDraw.

4.1 Functional Requirements

4.1.1 Basic Chat Functionality

TeamDraw must provide all basic functionality of a text-only chat client. The most important
parts are:

Administrative Functionality

• Handling a list of servers (add, edit, remove servers)
• Connecting to multiple servers
• Joining multiple channels per server
• Displaying a user list for each channel

Core Functionality

• Handling channels (join, leave, create)
• Displaying channel messages
• Typing text messages for other users

4.1.2 Graphical Extensions

In addition to the basic text based communication, TeamDraw should offer the following
graphical extensions:

• Share one graphical desktop per channel (vital)
• Set / change attributes of entities (optional):

– Color
– Owner
– Width
– Line style

• Drawing entities:
– Lines (important)
– Ellipses (optional)
– Texts (important)
– Arrows (optional)
– Rectangles (optional)

• Modifying entities
– Selecting entities (important)
– Moving entities (important)
– Scaling entities (optional)
– Deleting entities (important)

• Viewing:
– Auto zoom (important)

Project Report and
Technical Documentation

4 APPLICATION REQUIREMENTS 9

– Zoom in / out (important)
– Window Zoom (optional)
– Panning (important)
– Scrolling (vital)
– Highlight entities drawn by a specific user (optional)
– Highlight entities that are currently locked (selected by another user)
– Highlight entities that are currently locked (selected) by this user

4.1.3 Managing Drawings

• Drawings are persistent (important)
• Previous drawing sessions can be restored (important)
• All available drawing sessions can be listed (important)
• New drawings can be added (important)
• Existing drawings can be deleted (optional)
• The current drawing can be changed during a session (important)

4.1.4 Platforms

Description

The system must be portable to the following platforms:

• Linux (vital)
• Windows (vital)
• Mac OS X (optional)

Project Report and
Technical Documentation

4.2 Interface Requirements 10

4.2 Interface Requirements

4.2.1 Graphical User Interface Of The Client

The main components for the Graphical User Interface (GUI) of TeamDraw are:

Server Connection Views: A connection to a server is shown as a child window of the main
application window in a similar way like documents are shown in other applications (see
Figure 5).

Channel Views: Channels are visualized on tabs within the view of the server connection
they belong to (see Figure 5). One tab is reserved for channel independent information that
is received from the IRC server. Each other tab visualizes one channel.

Each channel tab must contain:

• Topic
• Document list (shows a list of available drawings and allows the user to change the

current drawing)
• Drawing area (changing and viewing the current drawing)
• Drawing tools
• Text display area (shows all text messages from users in the same channel)
• Text input field to type messages for the other users
• Users list (shows a list of all users in the same channel)

Menus:

• File: Open local drawing, Export, Quit, New Connection
• Windows: Window handling
• Help: About

Dialogs:

• Connecting to servers
• Handling a server list
• Joining channels

Main Application Window

Connection To Server 2

Connection To Server 1

Server Info Channel 1 Channel 2

? Topic
? Document List
? Drawing Area / Drawing Tools
? Text Display Area
? Text Input Field
? User List

Figure 5: The fundamental components of the user interface.

Project Report and
Technical Documentation

5 DESIGN 11

5 Design

This chapter introduces the architecture of TeamDraw and the environment it requires. Further, the
design of the TeamDraw modules is documented.

5.1 Architecture Overview

Figure 6 shows a typical system architecture in which TeamDraw can be used.

IRC Server

Client A IRC Network Client B

Client C

Client D

Client E

TeamDraw Bot
Drawings

Figure 6: Architecture overview.

For the development and testing of TeamDraw only one IRC server was used. It can be
safely assumed that TeamDraw would also work with multiple servers as shown in Figure
2, page 4. However, it may not be realistic for other reasons (such as performance, and
administration) to use TeamDraw in large scale networks.

In Figure 6, the bot is running on a separate server in the network. Depending on the network
infrastructure it might be more suitable to run the bot on the IRC server or on one of the
client machines. All three scenarios are possible. Ideally, the bot should run on a machine
that is permanently online.

5.2 Overall Design

TeamDraw is split up into six modules:

Libraries

• libgraphics: The graphics library of TeamDraw covers all functionality that exclusively
deals with the construction of drawings. This library could be used in any application
that requires a drawing engine. There are no network or IRC specific classes in this
library.

• libirc: The IRC library was designed to implement the IRC protocol and the extensions
that were required to implement TeamDraw.

Project Report and
Technical Documentation

5.3 Design Of The TeamDraw Modules 12

• libcore: This library contains classes that represent the basic objects of TeamDraw (e.g.
channels, users, server connections, . . .).

• libtools: Classes that are commonly used in any kind of application (e.g. container
classes, classes for debugging, classes to store and load application settings).

Applications

• bot: The implementation of the bot as a special client, who handles the master drawings.
This is a console application.

• teamdraw: The implementation of the GUI for the graphical TeamDraw client.

5.3 Design Of The TeamDraw Modules

5.3.1 Graphics Library

The graphics library features a set of classes that can be used to implement an application
with basic drawing functionality. It is designed after the Model-View-Controller (MVC)
architecture.

Model
The model consists of:

• An entity container which holds all entities (graphical elements)
• Classes that define entities (Lines, Ellipses, Texts).

The entity classes define the behavior, geometry and look of an entity. The idea behind this
design is that new entity types can be easily supported by adding a new entity class which
implements all functions that are declared by the TDR Entity 6 interface.

The design of the model classes of TeamDraw is shown at the right in Figure 7.

View
The view is a class that can display an entity container with scroll bars (TDR GraphicView).
It offers methods for defining the current scaling factor and position of the viewport that is
currently displayed.

Each view is associated to an action handler (TDR ActionHandler, Figure 7). The action
handler knows what kind of activity the user is currently doing (e.g. drawing lines, panning,
. . .). It also links the view to the controller classes.

6All classes of TeamDraw use the prefix TDR

Project Report and
Technical Documentation

5 DESIGN 13

Figure 7: Graphics library design: model and view classes.

Project Report and
Technical Documentation

5.3 Design Of The TeamDraw Modules 14

Controller
The controller classes shown in Figure 8 handle all user interactions to create and modify en-
tities and to change the view. These controller classes are also called ”actions“ in TeamDraw.
Actions are handled by the action handler class as previously mentioned.

Figure 8: Graphics library design: controller classes.

If, for example, the user wants to draw a line, the current action is set to TDR DrawLine. All
events received by the graphic view are forwarded to the action handler which dispatches
them to the current action class TDR DrawLine. This class handles the events by setting the
end points or showing a preview. Figure 9 shows the sequence diagram of the TDR DrawLine
action with the classes involved.

Figure 9: Sequence diagram for drawing a line.

Project Report and
Technical Documentation

5 DESIGN 15

Separate from the actions, there is a controller class TDR FileIO, that can store an entity
container to a file or load it from a file. The format that is used is Scalable Vector Graphics
(SVG) [7].

5.3.2 IRC Library

The IRC library implements the IRC protocol and offers various TeamDraw specific exten-
sions for sending graphical entities over IRC. The main components of the library are:

• TDR IrcConnection: The IRC connection class manages the socket to the server and
offers an extensive interface for sending and receiving messages.

• TDR IrcMessage: A thin wrapper around an IRC message (either a TeamDraw specific
command, a normal IRC message or a message that contains graphical information).

Further there are helper classes that implement message queues. Message queues are used
to hold back messages to prevent the client from flooding the IRC server (see also 3.3).

Figure 10: IRC library design.

Project Report and
Technical Documentation

5.3 Design Of The TeamDraw Modules 16

5.3.3 Core Library

The core library offers a few generic data structures for the implementation of a chat appli-
cation with server connections, channels, users and drawings. The TeamDraw client as well
as the bot both internally store a structure as shown in Figure 11 to manage these objects.

Figure 11: Core library design.

Project Report and
Technical Documentation

5 DESIGN 17

5.3.4 Application GUI

The GUI of the TeamDraw client is implemented as specified in section 4.2 Interface Re-
quirements, page 10.

The main window class TDR ApplicationWindow creates and manages one or more
TDR MDIWindows for every server connection.

If the client is connected to a server, the TDR MDIWindow contains the widgets for working
on a remote drawing as shown in Figure 12.

Figure 12: The classes of the TeamDraw GUI in client mode.

A TDR ServerWidget consists of one TDR ServerMessageWidget and one or more
TDR ChannelWidgets. The TDR ServerMessageWidget displays information about and from
the IRC server.

A TDR ChannelWidget represents one channel (chat room). It contains a TDR TextWidget, a
TDR GraphicsWidget and further a user list and buttons for leaving the channel and adding
drawings. The text area (TDR TextWidget) works like in common IRC clients and is just used
for text based communication. The graphics widget serves as a drawing canvas for drawing
and displaying graphical documents.

Project Report and
Technical Documentation

5.3 Design Of The TeamDraw Modules 18

In addition to the scenario above, TeamDraw offers an alternative mode to create and edit
local drawings without connecting to a server. In this mode, the TDR MDIWindow only
contains a graphics widget as shown in Figure 13.

Figure 13: The classes of the TeamDraw GUI in the standalone mode.

For the sake of completeness, Figure 14 shows the class diagram of the TeamDraw GUI.

Figure 14: Application GUI design.

Project Report and
Technical Documentation

6 THE TEAMDRAW CLIENT 19

6 The TeamDraw Client

This chapter is a brief introduction to get started with the TeamDraw client.

6.1 The Main Application Window

The TeamDraw user interface presents itself as an empty window after startup. Usually the
first thing a user does after starting TeamDraw is to connect to an IRC server by selecting
the menu: ’File’ -> ’New Connection’. This menu shows the server connection dialog
(Figure 15).

6.2 Connecting To An IRC Server

Figure 15: The Server connections dialog assists the user to configure server connections and
to connect to a previously configured server.

To add a new server connection and connect to it, please proceed as follows:

1. Click the ’Add’ button at the top to add a new server to the list of your favorite IRC
servers.

2. Type in the information at the right as described in Table 1
3. Click the ’Connect’ button

The new connection will later be available in the server list at the left, named after the ”IRC
Server”.

Project Report and
Technical Documentation

6.3 Channel Dialog 20

Parameter: Description: Example value:
IRC Server ’IRC Server’ specifies the URL of the server teamdraw.dnsalias.org
IRC Port To connect an IRC server, the port to reach

the service needs to be specified. Public IRC
servers are usually reachable over the default
IRC port 6667.

6667

IRC Password The access to an IRC Server can be restricted
with a server password.

Nickname Nickname is the name which identifies you on
the IRC server. Other users on IRC will know
you by that name. The nickname is limited to
9 characters.

tux

Realname The entered real name can also be seen by other
people on IRC. However, unlike the nickname
it does not have to be unique in the IRC net-
work.

Tux the Penguin

Username The username is used by the IRC Servers. tux
Periodicity The periodicity specifies the time span be-

tween sending messages in milliseconds. The
configuration of the periodicity is needed to
prevent an ”Excess Flood” on the IRC server.
The value is dependent on the configuration
of the IRC server.

1100

Messages per
period

The messages per period defines the number
of messages sent every period. The configu-
ration depends on the IRC server and on the
configured periodicity.

1

Table 1: Server connection parameters.

6.3 Channel Dialog

After a connection was successfully established to an IRC server, the user has to join a chat
channel before he can communicate with other users. A user can join more than one channel
per server connection. Directly after connecting to the server, the channel dialog is shown to
join the first channel.

To join an additional channel, the channel dialog can be launched by clicking the ’Join

Channel’ button in the server messages tab.

6.4 Joining And Leaving A Channel

Immediately after joining a channel, the drawing area of the channel widget is disabled.
To enable it, the user first has to select the drawing he wants to work on. This is done by
selecting the name of one of the available drawings in the combo box at the right side below

Project Report and
Technical Documentation

6 THE TEAMDRAW CLIENT 21

Figure 16: The channel dialog is shown to configure and join channels.

the drawing area.

Alternatively, the user can create a new drawing by clicking the button ’Add Drawing’.

The button ’Leave Channel’ closes the current channel widget and leaves the channel when
pressed.

The TeamDraw client is split up into two sections: text based communication and graphical
communication.

6.5 Text Based Communication

The text area below the drawing area provides the basic functionality of a conventional IRC
client (see Figure 17).

Figure 17: The text area of TeamDraw.

Project Report and
Technical Documentation

6.6 Graphical Communication 22

6.6 Graphical Communication

The drawing area of TeamDraw provides a canvas that is shared among all users working
on the same drawing.

The combo box at the right below the drawing area (see Figure 18) allows the user to change
the drawing to work on at any time. If there are no drawings available, there might be no
drawings in this particular channel or no TeamDraw bot is available in that channel.

Figure 18: The graphics area for graphical communication.

Project Report and
Technical Documentation

6 THE TEAMDRAW CLIENT 23

6.6.1 Tools

Icon: Tool: Description:

Select Select one or more elements a drag them
around on the drawing area.

Deselect
All

Deselect all elements

Line Draw line: First click sets the starting point,
the second click the ending point.

Ellipse Draw ellipse: First click sets the left point at
the head, the second click sets the lower right
point.

Text Sets a text on the Drawing Area. The size of
the text can be entered in the dialog box.

Auto
Zoom

Automatically zooms to have a full view of the
drawing.

Window
Zoom

Select a section to be zoomed.

Panning Free panning on the drawing area.

Delete Delete the selected items (see section 6.6.3).

Table 2: TeamDraw tools.

Project Report and
Technical Documentation

6.6 Graphical Communication 24

6.6.2 Highlighting

TeamDraw has a feature to show what each user has contributed to the current drawing. A
click on the nick name in the user list highlights the user’s elements as shown in Figure 19.

Figure 19: Highlighting in TeamDraw.

6.6.3 Selection

With the arrow tool the user can select one or more elements in the drawing. The selected
elements are highlighted in red color for the user who has selected them. For all other users
these elements appear in blue color. Blue elements are not editable anymore for the others
until the user deselects them again.
An element can only be edited (moved, deleted) if the user was able to select it successfully.

Figure 20: Selection in TeamDraw.

Project Report and
Technical Documentation

7 THE TEAMDRAW BOT 25

7 The TeamDraw Bot

In this chapter the implementation of the bot is discussed. The bot deals with graphical messages and
the belonging user handling. The last chapter introduced you to the possibilities of the client, the bot
serves all the needs of the client.

The topics covered in this chapter are:

• Locking Graphical Entities For Modification
• Persistence Of Drawings
• Receiving And Forwarding Graphical Messages
• Optimized Distribution Of Messages
• Distinguishing Users
• Configuration And Usage Of The Bot
• IRC Commands For The Bot
• Settings File

7.1 Locking Graphical Entities For Modification

A client sends a message to the bot to acquire or release the lock on a graphical entity. The
client has to wait until the bot returned a message about the locking state. The owner of
an entity can always release the lock on that entity. After a change of the locking state on
the bot, it will forward the state to the other users of the drawing. Locking is needed for
modification or deleting of entities.

Figure 21: Locking and modification sequence.

Project Report and
Technical Documentation

7.2 Persistence Of Drawings 26

7.2 Persistence Of Drawings

The persistence of drawings is solved with periodic saving. The bot keeps the drawings
in the memory and saves them in intervals to the hard drive. On exit, the bot saves the
drawings. On restart, the bot searches for drawings in the save path and joins the required
channels. After a successful join, it will load the drawings for the channel.

7.3 Receiving And Forwarding Graphical Messages

Clients send graphical entities to the bot. The bot saves the entities to the drawing and
forwards the message to the other users.

Figure 22: Sequence for adding graphical entities.

7.4 Optimized Distribution Of Messages

The bot can become a bottleneck, depending on the amount of users to serve. For instance,
if a user activates a big drawing, the bot transmits the drawing to this user. This causes a big
delay for all other users, they have to wait until the bot has sent all entities. To prevent this
situation and serve users on a fair basis, a cyclic allocation or better known as Round Robin is
used to forward graphical messages. Common IRC messages are in a higher priority queue
to prevent delays in communication with the bot.

Project Report and
Technical Documentation

7 THE TEAMDRAW BOT 27

To give an overview of the round robin process, Figure 23 shows the structure of the queues.
A queue with higher priority messages is tracked in priorityMessageQueue. If that queue is
empty, Round Robin is used on the userMessageMap. This prevents starvation of users and
makes a fair service.

Figure 23: Round robin.

Implementation of round robin in pseudo code:

Initialize:

userMessageMap (map of message queues, contains a message queue

for every user e.g. userMessageMap["tux"])

priorityMessageQueue (queue of messages with priority)

numberOfMessages (number of messages to send)

Add Messages (invoked when a message arrives):

if(the received message is a graphical message) {

add message to userMessageMap into the queue of the appropriate user

} else {

add message to priorityMessageQueue

}

Send Messages (invoked periodically):

for(int i=0; i<numberOfMessages; i++) {

if(Message in priorityMessageQueue) {

transmit first Message of priorityMessageQueue

remove first Message from priorityMessageQueue

} else {

do {

find next non empty message queue

transmit first message of userMessageMap[user]

remove first message from userMessageMap[user]

} while (round not completed)

}

}

Project Report and
Technical Documentation

7.5 Distinguishing Users 28

7.5 Distinguishing Users

The TeamDraw bot needs to be able to distinguish TeamDraw users, conventional IRC users
and other TeamDraw bots. A bot registers users who join a channel and figures out if they
are TeamDraw enabled. The bot sends a specific message to ask the new client about its
TeamDraw capability. A client, which implements the graphical functionality, will reply
with a specific message. A common IRC client will not reply. This prevents common IRC
clients from receiving unneeded messages.

Figure 24: Login sequence of a graphics enabled user.

Project Report and
Technical Documentation

7 THE TEAMDRAW BOT 29

There needs to be one single bot in a channel to control the TeamDraw functionality. The
first bot, who joined a channel will become the owner of that channel. Another bot who tries
to join that channel will part automatically.

Figure 25: Sequence when a bot joins a channel where already another bot exists.

Project Report and
Technical Documentation

7.6 Configuration And Usage Of The Bot 30

7.6 Configuration And Usage Of The Bot

Drawings are managed and held persistent by the bot. The preferred working environment
of the bot is on the server, this is advantageous due to speed and simplification for the user.
However, the bot can be started on the client side. This does not force the server administrator
to install and support the bot. Running the bot on the client side is more error-prone. The
bot is a console application and is currently available for Linux only. The configuration of
the bot is saved in a settings file.

Running the bot in the console with ”./tdrbot –help” shows the available options:

Usage: ./tdrbot [OPTION]

Run bot for TeamDraw to handle drawings.

Available options for tdrbot.

-c, --create-settings Create a default settings file and exit

-h, --help Display this help and exit

-u id, --use-setting id Start tdrbot with configuration ’id’

-v, --version Output version information and exit

7.7 IRC Commands For The Bot

Information about the bot is retrieved as private messages. To query the bot, a common IRC
client or TeamDraw can be used. The following commands are available on the bot to get
status information or for runtime configuration.

Command Description Example
active List of users and their active drawing on

a channel.
/msg tdrbot active #graphics

add Add a new drawing to a channel (bot
has to be joined on that channel).

/msg tdrbot add #graphics name

help Get available commands. /msg tdrbot help
join Join a new channel. /msg tdrbot join #graphics
list List of drawing. /msg tdrbot list
part Part a channel. /msg tdrbot part #graphics
save Save drawings. /msg tdrbot save
users Get list of users on bot. /msg tdrbot users
version Get version of the bot. /msg tdrbot version

Table 3: Overview of bot commands.

Project Report and
Technical Documentation

7 THE TEAMDRAW BOT 31

7.8 Settings File

For the first time running the bot, it is recommended to create a default settings file
with ”./tdrbot -c”. The settings file will be created in the users home directory (e.g.
”/home/username/.tdr/tdr botrc”). To change the settings, a text editor is needed.

Content of the default settings file:

[connection1]

channels/channel1=#graphics

drawings/path=/home/username/drawings

drawings/periodicity=5

flowcontrol/messages=1

flowcontrol/periodicity=20

serverdata/name=TeamDraw default setting

serverdata/password=somepass

serverdata/port=6667

serverdata/url=teamdraw.dnsalias.org

userdata/nickname=tdrbot

userdata/realname=TeamDraw Bot

userdata/username=tdrbot

The settings file is the source to configure the bot. The configurations are in the same style
as already explained in the client section in table 1 on page 20.

Additional settings are explained in the following table:

Parameter: Description:
[connectionX] Specifies the configuration section (X starts with 1, a

whole section can be copied, X needs to be incremented)
channels/channelY=
#teamdraw

Specifies a channel Y to join on start (Y starts with 1 and
needs to be incremented for every additional channel to
join).

drawings/path=
/home/username/drawings

Specifies the save path for the drawings.

drawings/periodicity=5 Specifies the periodicity to save drawings (in seconds).

Table 4: Bot options, settings file.

After changing the settings file, a restart of the bot is needed to apply the new configuration.
The bot exits, when ”Ctrl-C“ is pressed.

The default connection settings used is [connection1]. To start the bot with another connection
setting, the console switch -c is needed. For example, section [connection7] is used for
connecting with the command ./tdrbot -c connection7.

Project Report and
Technical Documentation

32

8 Project Management

8.1 Project Initiation

8.1.1 Choosing A License

From the very beginning of the project it was clear to us that TeamDraw will be developed
under an open source license. The GPL7 was chosen primarily because it is well known and
the most widely used open source license.

8.2 Documentation Tools

8.2.1 Source Code Documentation

The source code is documented in the sources themselves. Only an automated way of
extracting this documentation and generating a set of HTML pages from it can be considered
a solution. doxygen[4] was chosen for its compatibility with the well known JavaDoc utility
and for the fact that it supports C++ and runs under Linux.

8.2.2 Technical Documentation

For the technical documentation of the project LATEX and OpenOffice were considered. Since
we’ve used LATEX on various occasions before and have made very good experiences with
it, the choice was rather clear. LATEX also has the advantage of being a plain text document
format which can be managed by CVS. Further, it is very practical to automatically generate
and include parts of the documentation. For diagrams and graphics, OpenOffice was chosen
due to its good graphical capabilities and its built-in EPS support (a requirement needed for
integration in LATEX documents).

Description Priority LATEX OpenOffice
Mandatory
Availability on Linux X X
Desired
Version Control 10 10 1
Automated generation and inclusion of
documentation parts

8 10 3

Efficiency 8 8 6
Know-how in the team 7 6 5
Points (

∑
Priority · Points) 286 117

Table 5: Value benefit analysis for the technical documentation.

7http://www.opensource.org/licenses/gpl-license.html - the GPL.

Project Report and
Technical Documentation

8 PROJECT MANAGEMENT 33

8.3 Development Platform

Possible choices for a development platform were Windows and Linux. Both were available
to all project members. The value benefit analysis in the following table is based on personal
experiences, requirements and know-how. It is not a generic, representative analysis to
compare Windows and Linux. The analysis is correct for this very project and our team.

Description Priority Windows Linux
Mandatory
Availability at school X X
Availability at home X X
Desired
Tools (CVS, ssh, shell, vim, distcc, LaTeX,
doxygen, compiler)

8 3 10

Stability, reliability 5 6 9
Effort to set up the working environment 7 3 10
Personal efficiency when working with this
platform

8 3 10

Points (
∑

Priority · Points) 75 195

Table 6: Value benefit analysis for the development platform.

8.4 Programming Language

Choices for the programming language were rather limited since only Java and C++ are
known to all project members and learning a new language would have been an additional
risk that could have compromised the schedule.

Description Priority Java C++

Mandatory
Availability of a compiler and API on
Unices, Linux, Windows, Mac OS X

X X

Desired
Performance 5 4 8
Know-how in the team 7 6 7
Overall user experience for applications
written in that language (installation,
snappy GUI, ..)

8 6 10

Points (
∑

Priority · Points) 110 169

Table 7: Value benefit analysis for the programming language.

The decisive factors for choosing C++ were the overall user experience that we find to be
generally better with a C++ application.

8.5 GUI Toolkit

Portability was the main issue when choosing a GUI toolkit for TeamDraw. The application
GUI must run under Linux but should also be available for Windows users. Coding the GUI
twice was not considered to be an acceptable solution.

Project Report and
Technical Documentation

8.6 Version Control System 34

Qt[6] was chosen mainly for being a well designed and highly portable C++ GUI toolkit.
There is also a good level of experience with Qt in our team. Qt is licensed under the GPL
for Linux, Unix systems and Mac OS X. However, the Qt version for Windows is proprietary
software.

8.6 Version Control System

CVS was chosen over the relatively new Subversion version control system. CVS was already
known and used before by all team members. Further, CVS installations are available on
public development platforms such as SourceForge.

8.7 Generation Of Executables

The use of makefiles is the preferred way over using IDEs to build TeamDraw. Makefiles can
be generated with qmake (part of Qt) for a variety of platforms and compilers. qmake was
chosen due to the simple configuration an because it was available with the Qt installation.

8.8 Graphics Format

TeamDraw internally uses a graphics format for storing drawings to the disk and to pack
graphical information about entities into the textual payload of the IRC protocol (serializa-
tion).

SVG was chosen for the various advantages the XML based format offers over other vector
based image formats:

• Internationalization (Unicode support)
• Easy parsing and manipulation through standard APIs
• SVG is a human readable text based format

Project Report and
Technical Documentation

8 PROJECT MANAGEMENT 35

8.9 Project Organization

8.9.1 Project Responsibilities and Deliverables

Laurent Cohn

• Design and Implementation of:
– TeamDraw Application GUI

(menus, dialogs, controls)
• Documentation

– The TeamDraw Client (50%)
– Design (Application GUI)
– Abstract

• Ports
– Windows

Thomas Jund

• Design and Implementation of:
– IRC Library
– Bot
– Core Library (50%)

• Documentation
– The TeamDraw Bot
– Protocol Specification
– Supported SVG Elements

Andrew Mustun

• Design and Implementation of:
– Graphics Library
– Tools Classes
– Core Library (50%)

• Documentation
– Introduction
– Instant Communication Over The Internet
– From IRC to TeamDraw
– Design (Architecture Overview, Overall Design)
– The TeamDraw Client (50%)

• Ports
– Mac OS X

Project Report and
Technical Documentation

8.9 Project Organization 36

8.9.2 Project Schedule

Figure 26 shows the schedule as it was planned in the first phase of the project.

Figure 26: Planned schedule.

In Figure 27, the actual development efforts are visualized for the individual modules as well
as for the documentation efforts. The statistics is based on the CVS logs and was generated
with StatCvs [11].

Figure 27: Measured progress by module.

Project Report and
Technical Documentation

9 CONCLUSION 37

9 Conclusion

In this section we look back on the first implementation of TeamDraw and discuss some thoughts about
the technology we have used.

9.1 Room For Improvements And Additional Features

Due to the limited time frame for this project (7 weeks) we have restricted the project on
implementing only the basic functionalities of a graphical IRC Client.

The following features have not been implemented but would be considered to be interesting
for future versions:

• Loading drawings from clients to the bot.
• Opening a separate tab for private messages.
• Implementing security measures to protect drawings from being deleted by non-

authorized users.
• Adding more drawing tools (poly line, rectangles, freehand lines, arrows, . . .)

There is still room for improvement in the following areas:

• Automatic reconnection of clients and bot (e.g. needed when IP changes)
• Improving the performance of the bot (for example with multi-threading to serve

multiple users concurrently)

9.2 Significance Of The Project

The implementation proved that collaborating on creating drawings over the Internet is
indeed realistic. In its current version, TeamDraw can be used for brainstorming or for fun
projects. However, we believe that there are other possible areas of application.

9.3 Learning Process

Thomas primarily worked on the implementation of the IRC protocol and the network layer.
He found working with IRC and CTCP to be the most useful parts of his work. Further, he
has gained more experience with using UML and especially sequence diagrams.

Laurent deepenend his knowledge about Qt and C++ programming by implementing parts
of the GUI client. He also gained experience in using Together [?] to create class diagrams.
While implementing the server options dialog, the complexity required a complete refactor-
ing at a certain point which proved to be a good learning experience for Laurent.

Andrew found the project management to be the biggest challenge of the project. Since he
already has a considerable amount of experience with software development, he was the one
who was concerned with the organization and management of the team.

Project Report and
Technical Documentation

38

A Protocol Specification

This chapter is a description of the messages used by TeamDraw enabled clients and bots. To support
the graphical functionality of TeamDraw on the network level, a protocol definition is needed. For
instance, graphical messages must not disturb conventional IRC clients.

A.1 Message Details

TeamDraw works with the IRC protocol for text and graphical messages. Messages of
TeamDraw are embedded in the Client-To-Client Protocol (CTCP). A message is extracted
as string of octets from the CTCP payload. Bots and clients send messages to each other,
which may or may not generate a reply. Some of the commands are just needed for replies.
The IRC protocol is documented in RFC 14598 and CTCP messages are defined in the CTCP
specification9.

A.2 Message Overview

An example message is used to give a general overview of the protocol encapsulation. In this
example a user in channel ”#teamdraw“, sends a line to the bot with the nickname ”team bot“
concerning the drawing ”roadmap“. This generates an IRC messages ”PRIVMSG” to the bot
(team bot).

Figure 28: Message overview.

In the payload of the private message, the CTCP protocol is embedded. The escape sequence
\001 in Figure 28 represents the ASCII character SOH (0x01). This character is used to identify
CTCP messages. Details of TeamDraw messages are explained later in this chapter.

8http://ietf.org/rfc/rfc1459.txt?number=1459
9http://www.irchelp.org/irchelp/rfc/ctcpspec.html

Project Report and
Technical Documentation

A PROTOCOL SPECIFICATION 39

A.2.1 Syntax Format

This section describes the format by an example. A detailed description of the syntax is
provided in ABNF notation.

Example of a TeamDraw message to send a graphical entity (when the client adds a new line,
this message is sent from the client to the bot):

TDR MSG︸ ︷︷ ︸
1.

: #teamdraw@roadmap
︸ ︷︷ ︸

2.

:< linestyle =′′ stroke : rgb(0, 0, 0); .../ >
︸ ︷︷ ︸

3.

1. TeamDraw messages have the prefix ”TDR “ and are followed by three characters to
identify the command. In this case is the full command ”TDR MSG“ which identifies
a graphical message.

2. Parameters are identified by a colon (“:”) after the prefix. For example, the graphical
message needs its drawing identification. In some cases more than one parameter is
needed, they are concatenated with a colon in advance. This restricts parameters to
strings without colons.

3. This part of the message is the payload. Valid characters are restricted due to the IRC
protocol. For instance, Carriage Return and New Line characters are not allowed in the
payload. The leading colon identifies the payload. In most cases the payload contains
an SVG snippet.

A.2.2 ABNF Notation

The extracted message is parsed into the components<prefix>, <command>, <parameters>
and <payload>.

message = prefix command [params] [payload]

prefix = "TDR_"

command = 3*3(ALPHA | "?") ["_" 1*1ALPHA]

params = ":" *noctl

payload = ":" *TEXT

noctl = %x0B-0C / %x0E-1F / %x21-39 / %x3B-FF

; excluding special chars like NUL, CR, LF, " ", ":", "@"

Project Report and
Technical Documentation

A.3 Message Details of TeamDraw Messages 40

A.3 Message Details of TeamDraw Messages

A.3.1 Overview

Command Type Parameters/Content Short Description
TDR AC? Request Entity, Lock, Drawing ID Acquire lock on graphical element
TDR ACQ Reply Entity, Selector, Drawing ID Acquisition status of lock
TDR CHO Request Drawing ID Choose drawing
TDR CMP Transmit Drawing ID Transmission of drawing completed
TDR EN? Request Channel Identify TeamDraw ability
TDR ENA Reply Channel Identification successful
TDR JOI Request Channel Join a channel (for bot)
TDR LS? Request Channel Request list of drawings
TDR LST Reply Drawing list List of drawing IDs
TDR MSG Transmit SVG snippet Graphical message
TDR MSG S Transmit SVG snippets Start of long graphical message
TDR MSG C Transmit SVG snippets Continuing of graphical message
TDR MSG E Transmit SVG snippets End of long graphical message

Table 8: Overview of message details.

A.3.2 Acquire Request Message

Command: TDR AC?
Parameter: Entity ID, Lock, Drawing ID
Payload: None
Description: The TDR AC? command is used to lock and unlock graphical entities.

Typically a client acquires a lock from a bot.
Example: TDR AC?:nickname 9:true:#teamdraw@roadmap
Reply: TDR ACQ from the bot.

A.3.3 Acquire Reply Message

Command: TDR ACQ
Parameter: Entity ID, Selector, Drawing ID
Payload: None
Description: The TDR ACQ is used to reply the state of a graphical entity. Typically

the bot replies the state of an entity to a client.
Example: TDR ACQ:nickname 9:ownernick:#teamdraw@roadmap
Reply: None

Project Report and
Technical Documentation

A PROTOCOL SPECIFICATION 41

A.3.4 Choose Drawing Message

Command: TDR CHO
Parameter: Drawing ID
Payload: None
Description: The TDR CHO is used from the client to activate a drawing. Typically

the bot sends the whole drawing as reply.
Example: TDR CHO:#teamdraw@roadmap
Reply: Graphical entities with TDR MSG from the bot.

A.3.5 Drawing Completed Message

Command: TDR CMP
Parameter: Drawing ID
Payload: None
Description: The TDR CMP is used to inform the user about the end of transmission

of a selected drawing. Typically the bot sends it to the client which will
make the drawing active.

Example: TDR CMP:#teamdraw@roadmap
Reply: None

A.3.6 Registration Message

Command: TDR EN?
Parameter: channel
Payload: None
Description: The TDR EN? command is used to identify an TeamDraw enabled user

on a channel. Typically the bot asks a user who joined a channel about
his TeamDraw ability.

Example: TDR EN?:#teamdraw
Reply: TDR ENA from a graphics enabled client.

A.3.7 Registration Reply

Command: TDR ENA
Parameter: Channel
Payload: None
Description: The TDR ENA command is used to reply to a registration message.

Typically the client sends the reply to the bot.
Example: TDR ENA:#teamdraw
Reply: None

Project Report and
Technical Documentation

A.3 Message Details of TeamDraw Messages 42

A.3.8 Join Message

Command: TDR JOI
Parameter: Channel
Payload: None
Description: The TDR JOI message is used to tell the bot to join a new channel.
Example: TDR JOI:#teamdraw
Reply: None

A.3.9 Drawing list Request Message

Command: TDR LS?
Parameter: channel
Payload: None
Description: The TDR LS? message is used by clients to request a list of available

drawings on a channel.
Example: TDR LS?:#teamdraw
Reply: TDR LST from the bot on that channel.

A.3.10 Drawing list Reply Message

Command: TDR LST
Parameter: Whitespace separated list of Drawing IDs
Payload: None
Description: The TDR LST message is used by a bot to send the list of available

drawings on a channel to the clients.
Example: TDR LST:#teamdraw@roadmap1 #teamdraw@roadmap2
Reply: None

A.3.11 Graphical Message

Command: TDR MSG
Parameter: Drawing ID
Payload: SVG snippet
Description: The TDR MSG is used to transmit a graphical entity.
Example: TDR MSG:#teamdraw@roadmap:<line style=”stroke:rgb(0,0,0);... />
Reply: None

Project Report and
Technical Documentation

A PROTOCOL SPECIFICATION 43

A.3.12 Graphical Message Start

Command: TDR MSG S
Parameter: None
Payload: Part of SVG snippet or SVG snippets
Description: The TDR MSG S introduces the transmission of graphical entities.
Example: TDR MSG S:<line style=”stroke...
Reply: None

A.3.13 Graphical Message Continue

Command: TDR MSG C
Parameter: None
Payload: Part of SVG snippet or SVG snippets
Description: The TDR MSG C continues the initiated transmission of graphical en-

tities.
Example: TDR MSG C:#teamdraw@roadmap:...roke:rgb(255,255,0);...
Reply: None

A.3.14 Graphical Message End

Command: TDR MSG E
Parameter: Drawing ID
Payload: Part of SVG snippet or SVG snippets
Description: The TDR MSG E ends the transmission of graphical entities.
Example: TDR MSG E:#teamdraw@roadmap:.../>
Reply: None

Project Report and
Technical Documentation

44

B Supported SVG Elements

In its current version, TeamDraw supports three types of entities. In SVG they are represented
by the following basic shapes:

Ellipse
The <ellipse> tag is used to serialize ellipses. Example SVG snippet for an ellipse entity:

<ellipse cx="0.61157" cy="0.0330579" rx="6.69421" ry="7.00826" stroke="#000000"

stroke-width="0" id="nickname_0" />

Line
The <line> tag is used to serialize lines. Example SVG snippet for a line entity:

<line x1="7.53719" y1="7.80165" x2="6.18182" y2="-7.07438" stroke="#000000"

stroke-width="0" id="nickname_1" />

Text
The <text> tag is used to serialize text elements. Example SVG snippet for a text entity:

<text x="5.5625" y="30.8000" font-familiy="Helvetica" font-size="12" fill="#000000"

id="nickname_1">Written Text</text>

The id attribute of each entity is used to store the owner (creator) of the entity. To keep IDs
unique they also contain a counter which numbers the entities for every user.

Project Report and
Technical Documentation

C GLOSSARY 45

C Glossary

ABNF: Internet technical specifications often need to define a format syntax and are free
to employ whatever notation their authors deem useful. Over the years, a modified
version of BNF, called ABNF, has been popular among many Internet specifications.
It balances compactness and simplicity with reasonable representational power.
The syntax format is defined in RFC 223410 . [3]

Channel: There can be many simultaneous discussions going on at once on one IRC server;
each conversation is assigned a unique channel. Messages that are addressed to that
channel can be read by all users who have joined that channel. Synonym: Chat Room.

Entity: This document refers to entities as graphical elements such as lines, circles, . . .

IRC Bot: An IRC bot is special IRC client which does not represent a real person but a com-
puter program. Such programs are often used for monitoring or to add functionality
to a channel that is not provided by standard IRC (e.g. user identification).
In TeamDraw, a bot is used to manage and store drawings created by the users.

IRC Client: A user who wants to participate to an IRC conversation needs an interface to
connect the IRC networks. Such interfaces are available as locally running software
as well as web interfaces. There are a lot of freely available IRC clients for nearly any
platform. Popular clients are mIRC (Windows), Ircle (Mac OS X) and XChat (Linux).

IRC: Internet Relay Chat – A protocol and a program type that allows participants to
”chat“ online in a live forum that usually centers around a common interest. IRC is
the earliest form of online chat [10].

stateful: A system is stateful if it has the capability to maintain state, which means that it
remembers what was previously done.

stateless: Stateless systems have no information about what occurred previously.

10http://www.ietf.org/rfc/rfc2234.txt

Project Report and
Technical Documentation

46

D References

[1] TeamDraw User Manual, 2004,
T. Jund, L. Cohn and A. Mustun, ZHW, Winterthur

[2] Wikipedia,
http://www.wikipedia.org

[3] Wilde’s WWW Online Glossary,
http://dret.net/glossary/

[4] doxygen,
http://www.doxygen.org, Dimitri van Heesch

[5] DocBook,
http://www.oasis-open.org/docbook, OASIS

[6] Qt - Multi-platform, C++ Application Framework,
http://www.trolltech.com, Trolltech AS

[7] SVG - Scalable Vector Graphics,
http://www.w3.org/Graphics/SVG/

[8] The C++ Programming Language, Third Edition,
Bjarne Stroustrup, Addison Wesley

[9] Valgrind,
http://valgrind.kde.org

[10] GetNetWise,
http://www.getnetwise.org

[11] StatCvs,
http://statcvs-xml.berlios.de

Project Report and
Technical Documentation

E CD ROM CONTENTS 47

E CD ROM Contents

The CD ROM contains the following directory structure:

• bin
– bot

* linux:
Executable for Linux (tested on SuSE 9.0)

– teamdraw
* linux:

Executable for Linux (tested on SuSE 9.0)
* windows:

Executable for Windows (tested on XP)
• doc

– classref:
Class reference documentation

– technical:
Project report

• res:
RFC, Specifications

• src:
Source code

– bot
– libcore
– libgraphics
– libirc
– libtools
– teamdraw

Project Report and
Technical Documentation

48

F About the Authors

Thomas Jund, Andrew Mustun and Laurent Cohn are undergraduate students at the Zurich
University of Applied Sciences Winterthur (ZHW).

Thomas Jund received his certificate of ability as electrical draughtsman from the Swiss
Federation in 1998. He worked in the area of computer aided design (CAD), documentation
publishing and technical documentation services for a company specialized in building
automation. In addition to his interests in networking and CAD, he has also been active in
web design and web programming.

Andrew Mustun has been heavily involved in various large and middle sized open source
projects since 1995. He is the founder of well known projects like QCad, ManStyle and
dxflib. Andrew’s main interests are in the CAD / CAM area as well as in documentation and
information management. He worked for 14 months on a collaboration solution for a UK
based company which is specialized in document management for the building industry.

Laurent Cohn has his main interests in web programming and web design. He has designed
several web pages for companies and well-known non-profit organizations. Laurent has a
lot of programming experience with PHP and MySQL. His experience with working with
graphics and his intuition for good design, combined with his C++ skills make him a great
GUI programmer.

Project Report and
Technical Documentation

